翻訳と辞書
Words near each other
・ Schlesinger Building
・ Schlesinger Doctrine
・ Schlesinger Institute
・ Schlesinger Library
・ Schlesinger Report
・ Schlesinger v. Ballard
・ Schlesinger v. Councilman
・ Schlesinger v. Holtzman
・ Schlesinger v. Reservists Committee to Stop the War
・ Schlesische Arbeiter-Zeitung
・ Schlesische Zeitung
・ Schlesisches Tor (Berlin U-Bahn)
・ Schlesisches Wochenblatt
・ Schlesser
・ Schlessinger
Schlessinger's theorem
・ Schleswig (disambiguation)
・ Schleswig Air Base
・ Schleswig Cathedral
・ Schleswig Coldblood
・ Schleswig Foot Regiment
・ Schleswig Geest
・ Schleswig Party
・ Schleswig plebiscites, 1920
・ Schleswig station
・ Schleswig, Iowa
・ Schleswig, Schleswig-Holstein
・ Schleswig, Wisconsin
・ Schleswig-Flensburg
・ Schleswig-Holstein


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Schlessinger's theorem : ウィキペディア英語版
Schlessinger's theorem
In algebra, Schlessinger's theorem is a theorem in deformation theory introduced by that gives conditions for a functor of artinian local rings to be pro-representable, refining an earlier theorem of Grothendieck.
==Definitions==

Λ is a complete Noetherian local ring with residue field ''k'', and ''C'' is the category of local Artinian Λ-algebras (meaning in particular that as modules over Λ they are finitely generated and Artinian) with residue field ''k''.
A small extension in ''C'' is a morphism ''Y''→''Z'' in ''C'' that is surjective with kernel a 1-dimensional vector space over ''k''.
A functor is called representable if it is of the form ''h''''X'' where ''h''''X''(''Y'')=hom(''X'',''Y'') for some ''X'', and is called pro-representable if it is of the form ''Y''→lim hom(''X''''i'',''Y'') for a filtered direct limit over ''i'' in some filtered ordered set.
A morphism of functors ''F''→''G'' from ''C'' to sets is called smooth if whenever ''Y''→''Z'' is an epimorphism of ''C'', the map from ''F''(''Y'') to ''F''(''Z'')×''G''(''Z'')''G''(''Y'') is surjective. This definition is closely related to the notion of a formally smooth morphism of schemes. If in addition the map between the tangent spaces of ''F'' and ''G'' is an isomorphism, then ''F'' is called a hull of ''G''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Schlessinger's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.